1 (a) Drinks are often sold in cans.

These cans are made either of aluminium or of steel coated with tin. The table gives information about these three metallic substances.

metal	cost of 1 kg / £	amount in Earth's crust / %	
aluminium	1.31	8	
steel (iron)	0.32	5	
tin	12.6	0.0002	

(2)

Use the table to give **two** reasons why it could be more important to recycle tin than to recycle aluminium or steel.

reason	1			
reason	2			
(b)	Со	mpl	ete the sentence by putting a cross ($oxtimes$) in the box next to your answer.	
	The	e re	action for the extraction of aluminium from its ore involves	(1)
[X	A	heating with carbon	
[X	В	thermal decomposition	
[X	C	reduction	
[X	D	neutralisation	

(c) Magnalium is an alloy of aluminium and magnesium. The diagram shows the structure of this alloy.

	(Total for Question 1 – 8 may	eke)
(ii)	Explain, in terms of their structures, why magnalium is stronger than pure aluminium.	(3)
(i)	Explain what you understand by the term alloy .	(2)

The list shows some metals in reactivity series order with the most reactive at the top.				
		most reactive	calcium magnesium aluminium zinc iron copper gold	
(a) Wł	nich	of these metals can be f	ound as the uncombined metal in the Earth's crust?	
Pu	t a c	ross (⊠) in the box next	to your answer.	(1)
×	A	calcium		
×	В	gold		
X	C	magnesium		
X	D	zinc		
(b) Me	etals	are extracted by the rec	luction of their ores.	
Sta	ate t	he meaning of the term	reduction.	(1)
	(a) WI Pu IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(a) Which Put a c A B C D (b) Metals	least reactive (a) Which of these metals can be for Put a cross (⋈) in the box next □ A calcium □ B gold □ C magnesium □ D zinc (b) Metals are extracted by the recommon support to the control of th	most reactive calcium magnesium aluminium zinc iron copper gold (a) Which of these metals can be found as the uncombined metal in the Earth's crust? Put a cross (⋈) in the box next to your answer. □ A calcium □ B gold □ C magnesium

(c)	Aluminium is extracted by the electrolysis of a molten mixture of its ore (bauxite) and cryolite. Iron is extracted by heating a mixture of its ore and carbon.	
	Explain why electrolysis is used to extract aluminium but is not used to extract	
	iron.	(2)
(d)	An alloy of aluminium with magnesium is used for parts of aeroplanes.	
	Explain why the aluminium alloy is stronger than pure aluminium.	(0)
		(2)
(e)) When aluminium corrodes, it reacts with oxygen to form aluminium oxide, Al_2O_3 .	
	Complete the balancing of this equation by putting numbers in the spaces provide	ed. (2)
	$AI + \dots O_2 \rightarrow 2AI_2O_3$	
	(Total for Question 2 = 8 mar	ks)

3				carried out an experiment to see how reactive different metals are when laced in dilute hydrochloric acid.	
	A s	amı	ple	of each metal was placed in a separate test tube of acid.	
	(a)			zinc reacts with dilute hydrochloric acid, a gas is given off and zinc chloride ned.	
		(i)	Wł	nich gas is given off?	
		X	Α	carbon dioxide	
		X	В	chlorine	
		X	c	hydrogen	
		X	D	oxygen	(1)
		(ii)	Wł	nat is the formula of zinc chloride?	
		X	A	ZnCl	
		X	В	Zn ₂ Cl	
		X	c	ZnCl ₂	
		X	D	Zn ₂ Cl ₂	(1)
	(b)			experiment, the student used the same amount of each metal in a finely ered form.	
				two factors, concerning the hydrochloric acid, which should also be bled to produce valid results.	(2)
					(2)
1					
2					

(c)	Part of the reactivity series is shown in Figure 8.		
	most reactive	magnesium	
		aluminium	
		iron	
	least reactive	silver	
	Figure 8		
	Iron is extracted from its ore by heating with cark Aluminium is extracted from its ore using a differ		
	(i) Give the name of the method used to extract	aluminium.	(4)
			(1)
	(ii) Explain why aluminium is extracted by a different the ore with carbon.	rent method rather than heating	
			(2)
(d)	The extraction of iron involves the reduction of ir monoxide, CO. During this reaction, the iron oxid carbon monoxide is oxidised to carbon dioxide.		
	Write the balanced equation for the reaction.		
			(2)
		(Total for Question 3 = 9 ma	rks)

4	The	list shows some metals in order of reactivity.		
		most reactive	sodium aluminium zinc iron copper	
		least reactive	gold	
	(a)	Aluminium and iron are extracted by reduction	on of their oxides.	
		State what is meant by reduction.		(4)
				(1)
	(b)	Electrolysis and heating with carbon are two	methods of reduction.	
		Explain why aluminium needs to be extracted than by heating with carbon.	d from its ore by electrolysis, rather	
		than by neating with carbon.		(2)
	(c)	Iron is extracted from iron oxide, Fe ₂ O ₃ .		
		In the extraction process the iron oxide is head carbon dioxide.	ated with carbon to form iron and	
	,	Write the balanced equation for this reaction		(2)
				(3)

In many cases alloys are more useful than pure metals, for example they are stronger. Gold alloys, stainless steel and nitinol are examples of useful alloys.	
Describe how alloying improves the usefulness of metals and how strength is increased in terms of structure.	
You may use diagrams to help your answer.	(6)

*(d) Pure metal can be converted into alloys.

(Total for Question 4 = 12 marks)

5	(a) In the extraction of tin from tin oxide, tin oxide is heated with carbon.					
			$SnO_2 + C \rightarrow Sn + CO_2$			
	Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.					
	W	hen	the tin oxide reacts with carbon to form the products	(1)		
	X	A	tin is oxidised	(1)		
	×	В	tin oxide is reduced			
	×	c	carbon is reduced			
	×	D	carbon dioxide is oxidised			
	(b) Pure gold is too soft to be used for some jewellery.					
	(i) Gold alloys contain other metals such as copper and silver.					
			terms of the arrangement of metal atoms, explain why gold alloys are onger than pure gold.			
				(2)		

(ii) The purity of gold is often measured in carats.

The data shows how the number of carats is related to the percentage of gold.

number of carats	percentage of gold
24	100
22	92
18	75
9	38

On the grid provided, draw a graph of the percentage of gold against the number of carats.

(2)

(iii) A gold ring is 14 carat gold.

Use the graph to determine the percentage of gold in the ring.

(1)

ores by electrolysis or by heating the ore with carbon.	
Explain, using aluminum, gold and iron as examples, how the method used to obtain the metal is related to its position in the reactivity series and to the cost of the extraction process.	
·	(6)
(Total for Question 5 = 12 ma	rks)

*(c) Metals are obtained from the Earth's crust by different methods.

Some metals are found uncombined but others have to be extracted from their